# Do horsepower and wake boating matter to your lake?

Jeff Marr, Andy Riesgraf

William Herb, Matthew Lueker, Jessica Kozarek, Kimberly Hill

May 4, 2022

Presented to: Itasca Waters: Practical Water Wisdom 2023



### Motivation for Research Program

- In 2019 and 2020 emails and phone calls from concerned citizens and organizations. Research needed on impacts of large recreation boats on lakes and rivers – specifically, wakesurf boats and wakesurfing
  - Adverse env. impacts decrease in water clarity, signs of erosion, floating vegetation
  - Property damage impact of waves on shorelines, docks, etc.
  - Safety concerns for smaller vessels, paddlers, swimmers, wildlife, etc.
  - Shared use of lakes lake use is limited when wakesurf boats are active
- UMN-SAFL has an important role to play in these types of issues
  - Source of reliable information unbiased, high-quality, accessible.
  - Remain neutral we are a data generator. We don't write policy/law.



### **Overview of Research Program**

**Phase 1:** Measure/quantify wake waves produced by recreational boats, including both wakesurf and non-wakesurf boats.

**Phase 2:** Measure/quantify the propeller wash produced by recreational boats, including both wakesurf and non-wakesurf boats.

**Phase 3: Quantify impacts that wake waves** and **propeller wash** have on lake environments and water quality



### **Introduction to Boat Waves**

## The physics of surface water waves and vessel wakes is a rich topic and complex!



# What is important to know for recreational boat operation?

- A recreational boat is displacing water
- Three primary phenomena result from this displacement:
- 1. Divergent waves
- 2. Transverse wave (only at speeds below hydroplaning)
- 3. Propeller wash

Much more to this story involving water depth, boat planing condition, boat speed.



### Displacement versus hydroplaning

Hydrodynamic hull conditions of recreational vessels





### Phase I – Objectives

- 1. Conduct a field study to measure/quantify characteristics of the diverging wake waves produced by recreational boats, including both wakesurf and non-wakesurf boats.
  - How big are the wake waves produced by these boats?
  - Move the discussion from anecdotal observations to actual numbers.
- 2. Produce a report that is robust, externally reviewed, and accessible to all.
  - Phase I report released on February 1, 2022.
    - https://hdl.handle.net/11299/226190
    - The report has been downloaded ~ 11,300 times



### Phase I – Study Site

- Maple Plain, Minnesota
- Lake Independence 832 acres
- Typical Minnesota recreational lake
- Eastern shoreline (red box)
- Substrates primarily sand with a riprap shoreline
- Minimal aquatic vegetation
- Gradual increase in water depth with distance from shore (5% slope)





|                    | Manufacturer | Model       | Year | Drive               | Horsepower | Beam (ft) | Length (ft) | Dry Weight<br>(Ibs) | Ballast<br>(lbs) | Hydrofoil | Wake Shaper      |
|--------------------|--------------|-------------|------|---------------------|------------|-----------|-------------|---------------------|------------------|-----------|------------------|
| Non-<br>Wakesurf → | Larson       | LXI 210     | 2004 | Sterndrive<br>(I/O) | 260        | 8.3       | 21          | 2925                | No               | No        | No               |
| Vakesuli           | 🦳 Malibu     | Response LX | 2004 | Direct Drive (I)    | 310        | 7.5       | 20          | 2450                | No               | Yes       | Yes -aftermarket |





|                    | Manufacturer | Model       | Year | Drive               | Horsepower | Beam (ft) | Length (ft) | Dry Weight<br>(Ibs) | Ballast<br>(lbs) | Hydrofoil | Wake Shaper      |
|--------------------|--------------|-------------|------|---------------------|------------|-----------|-------------|---------------------|------------------|-----------|------------------|
| Non-<br>Wakesurf — | Larson       | LXI 210     | 2004 | Sterndrive<br>(I/O) | 260        | 8.3       | 21          | 2925                | No               | No        | No               |
| Vakesuli           | — Malibu     | Response LX | 2004 | Direct Drive (I)    | 310        | 7.5       | 20          | 2450                | No               | Yes       | Yes -aftermarket |







|                  |   | Manufacturer | Model             | Year | Drive       | Horsepower | Beam (ft) | Length (ft) | Dry Weight<br>(Ibs) | Ballast<br>(lbs) | Hydrofoil | Wake Shaper |
|------------------|---|--------------|-------------------|------|-------------|------------|-----------|-------------|---------------------|------------------|-----------|-------------|
| Wakesurf $\prec$ | ړ | — Malibu     | Wakesetter<br>VLX | 2019 | V-Drive (I) | 450        | 8.2       | 21          | 4200                | 3690             | Yes       | Yes         |
|                  |   | — Malibu     | Wakesetter<br>MXZ | 2019 | V-Drive (I) | 450        | 8.5       | 24.5        | 5500                | 4885             | Yes       | Yes         |







|                               | Manufacturer | Model             | Year | Drive               | Horsepower | Beam (ft) | Length (ft) | Dry Weight<br>(lbs) | Ballast<br>(Ibs) | Hydrofoil | Wake Shaper      |
|-------------------------------|--------------|-------------------|------|---------------------|------------|-----------|-------------|---------------------|------------------|-----------|------------------|
| Non-<br>Wakesurf <sup>—</sup> | Larson       | LXI 210           | 2004 | Sterndrive<br>(I/O) | 260        | 8.3       | 21          | 2925                | No               | No        | No               |
| Wakesult                      | Malibu       | Response LX       | 2004 | Direct Drive (I)    | 310        | 7.5       | 20          | 2450                | No               | Yes       | Yes -aftermarket |
| Wakesurf –                    | Malibu       | Wakesetter<br>VLX | 2019 | V-Drive (I)         | 450        | 8.2       | 21          | 4200                | 3690             | Yes       | Yes              |
|                               | Malibu       | Wakesetter<br>MXZ | 2019 | V-Drive (I)         | 450        | 8.5       | 24.5        | 5500                | 4885             | Yes       | Yes              |



#### ST. ANTHONY FALLS LABORATORY



UNIVERSITY OF MINNESOTA Driven to Discover®

### Phase 1 – Operational Conditions Tested

#### **Condition 1a**

- Non-wakesurf boats Largest wave/plowing (10 mph)
- Wakesurf boats Surfing (11 mph)

| Boat                  | Speed<br>(mph) | Trim Setting<br>(%) | Ballast<br>(% filled) | Hydrofoil         | Wake Shaper    | People Aboard<br>(qty) | People Weight<br>(lbs) |
|-----------------------|----------------|---------------------|-----------------------|-------------------|----------------|------------------------|------------------------|
| Larson LXI 210        | 10             | 50 (middle)         | N/A                   | N/A               | N/A            | 2                      | 330                    |
| Malibu Response LX    | 10             | N/A                 | N/A                   | Down              | On – Port Side | 2                      | 330                    |
| Malibu VLX Wakesetter | 11             | N/A                 | 100                   | Down – Setting #3 | On – Port Side | 4                      | 740                    |
| Malibu MXZ Wakesetter | 11             | N/A                 | 100                   | Down – Setting #3 | On – Port Side | 4                      | 740                    |



### Phase 1 – Operational Conditions Tested



#### **Condition 2**

- All boats on plane (20 mph) represents water skiing, tubing, wakeboarding, cruising
- Ballast empty, wake wedge stowed/removed

| Boat                  | Speed<br>(mph) | Trim Setting<br>(%) | Ballast<br>(% filled) | Hydrofoil         | Wake Shaper | People Aboard<br>(qty) | People Weight<br>(Ibs.) |
|-----------------------|----------------|---------------------|-----------------------|-------------------|-------------|------------------------|-------------------------|
| Larson LXI 210        | 20             | 100 (down)          | N/A                   | N/A               | N/A         | 2                      | 330                     |
| Malibu Response LX    | 20             | N/A                 | N/A                   | Down              | Off         | 2                      | 330                     |
| Malibu VLX Wakesetter | 20             | N/A                 | 0                     | Down – Setting #3 | Off         | 4                      | 740                     |
| Malibu MXZ Wakesetter | 20             | N/A                 | 0                     | Down – Setting #3 | Off         | 4                      | 740                     |



#### Phase 1 – Data Collection

#### 3 Masts + 2 Pads

- Masts: Deployed in water depths < 10 ft
- Masts: Pressure sensor
- Pads: Deployed on the lake bottom in 14 and 22 ft of water
- Pads: Acoustic Doppler Current Profiler









#### Phase 1 – Operational Distances

For each condition tested (1a, 2, 1b)

- Track lines ran parallel to the shoreline and perpendicular to the masts/pads
- Passes were made along the track lines from east to west
- Colored lines are an example of the realtime boat positional data for each pass plotted in AutoCAD



### Phase 1 – Wake Wave Characteristics

- Wave Height vertical distance measured from trough to crest of a wave.
- Wave Power the rate at which energy is transferred or used. For wake waves, it is the rate at which energy is transferred away from the track line.
- Wave Energy the ability of the wave(s) to do work or make change. In physics, work is often quantified as force applied over a distance.



$$P_{max} = \left(\frac{\rho g (H_{max})^2}{8} \frac{g T_{max}}{4\pi}\right) \qquad \mathsf{M}$$

Max wave power

$$E_{total} = \sum_{i=1}^{n} \frac{\rho g H_i^2 \lambda_i}{8}$$

Total wave packet energy



#### Phase 1 Results – Cond 1a & Cond 2: Max Wave Height





- Remember our different hull conditions (displacement, sub planing, planing)
- Wakesurfing is at **sub-planing** condition; different from other tow-sports
- Compare boats under their "Typical Usage".
  - **Comparison:** Wakesurf boats in surfing mode (Cond 1a) versus non-wakesurf boats in planing mode (Cond 2)





SITY OF MINNESOTA



SITY OF MINNESOTA **en to Discover**®

\* Data points less than one boat length from track line are not included in regression analysis.



SITY OF MINNESOTA

\* Data points less than one boat length from track line are not included in regression analysis.

#### Phase 1 – Example 1 of using data for guidance



SITY OF MINNESOTA

### Phase 1 – Example 1 of using data for guidance cont.





### Phase 1 – Summary of findings

- Comparing individual boats, we quantify the difference in wave characteristics between a planing condition (Condition 2) and transition to planing (Condition 1a).
- The wakesurf boats produced the largest waves under all conditions and substantially larger under Condition 1a (surfing).
- How a boat is used is important to consider as the wave characteristics are vastly different between usage modes.
- Data suggests distances greater than 500 feet are required to achieve wave characteristics similar to non-wakesurf boats.



### Introduction to Phase II: Propeller Wash (In Progress)

Propeller wash: high velocity jet of water produced by the boat engine, driveshaft and propeller.

Newton's 3<sup>rd</sup> Law of Motion – for every action there is an equal and opposite reaction.





### Phase 2 – Objectives

- 1. Conduct a field study to measure/quantify characteristics of the propeller wash produced by recreational boats, including both wakesurf and non-wakesurf boats (field portion completed fall 2022)
  - How deep does the propeller wash penetrate into the water column?
  - At what depth does propeller wash begin to interact with the lake bottom, and what happens when it does (e.g., changes in water quality)?
  - How long does it take for the turbulent wash to subside?
  - What are the magnitudes of velocities and turbulent fluctuations of the wash?
  - Again, move the discussion from anecdotal observations to actual numbers.
- 2. Produce a report from the field study that is robust, externally reviewed, and accessible to all (underway)



### Phase 2 – Field Study Site

- Lake Minnetonka, Minnesota
- Popular Minnesota recreational lake
- Many connected bays totaling 14,200 acres and 130 miles of shoreline
- Test site (red box)
  - North Arm Bay 307 acres
  - >500 ft from the shoreline in all directions

27

• No aquatic vegetation





### Phase 2 – Site Layout/ Data Collection

#### Multiple Sensor Deployments

- light/temperature chains (blue x)
- water quality Sonde continuous turbidity (green star)

28

- Acoustic Doppler Current Profiler (white rectangle)
- Acoustic Doppler Velocimeter (white circle)



JNIVERSITY OF MINNESOTA

Driven to Discover®





### Phase 2 – Data Collection

Pad - rectangular structures made of steel channel strut

- Pad 1 Acoustic Doppler Current Profiler (ADCP)
  - Deployed in 27 ft of water up looking
  - Collected high-resolution data on current velocities and turbulence through the water column at 4 Hz
- Pad 2 Acoustic Doppler Velocimeter (ADV)
  - Deployed in 16 ft of water down looking
  - Collected a small volume of 3D velocity measurements at the lake bed at 32 Hz





### Phase 2 – Data Collection

#### **Physical Water Sampling**

- Collected via SAFL built Van Dorn samplers
  - Instantaneously captures triplicate samples
  - At each pad, samples were collected from 2 depths (middle and near bottom)
  - For each condition, samples were captured just prior to the 1<sup>st</sup> pass, immediately after the 1<sup>st</sup> pass, and immediately after the 5<sup>th</sup>/last pass
  - Samples sent to UMN Research Analytic Lab for analysis of total phosphorous (TP) concentration, total suspended solids (TSS), and volatile suspended solids (VSS)





|                  | Manufacturer   | Model                    | Year | Drive                    | Max<br>Horsepower | Length<br>(ft) | Beam<br>(ft) | Dry Weight<br>(lbs) | Ballast<br>(Ibs) | Trim Plate/<br>Hydrofoil | Wake Shaper |
|------------------|----------------|--------------------------|------|--------------------------|-------------------|----------------|--------------|---------------------|------------------|--------------------------|-------------|
|                  | Hurricane      | SS 203                   | 2016 | Outboard (O)             | 175               | 20.3           | 8.5          | 3080                | No               | No                       | No          |
| Non-<br>Wakesurf | Cobalt         | R5                       | 2021 | Sterndrive (I/O)         | 300               | 25.7           | 8.5          | 4880                | No               | No                       | No          |
|                  | Cruiser Yachts | 34 GLS                   | 2022 | Twin Sterndrive<br>(I/O) | 760               | 35.8           | 11.7         | 14530               | No               | No                       | No          |
| Wakesurf -       | Nautique       | Super Air<br>G23 Paragon | 2022 | V-Drive (I)              | 600               | 23.0           | 8.5          | 7200                | 2200             | Yes                      | Yes         |
|                  | Malibu         | Wakes etter VLX          | 2019 | V-Drive (I)              | 450               | 21.0           | 8.2          | 4200                | 3690             | Yes                      | Yes         |



### Phase 2 – Operational Conditions Tested



#### Condition 1 – on plane speeds

 represents tow sports like wakeboarding, tubing, and waterskiing, or fast cruising

| Boat                  | Boat Speed<br>(mph) | Engine Speed<br>(RPM) | Trim Position<br>(%) | Ballast<br>(lbs) | Trim Plate/<br>Hydrofoil | Wake Shaper |
|-----------------------|---------------------|-----------------------|----------------------|------------------|--------------------------|-------------|
| Hurricane SS203       | 21.0                | 3250                  | 100 (down)           | N/A              | N/A                      | N/A         |
| Cobalt R5             | 21.0                | 3000                  | 100 (down)           | N/A              | N/A                      | N/A         |
| Cruiser Yachts GLS34  | 25.0                | 3650                  | 100 (down)           | N/A              | N/7-                     | N/A         |
| Nautique G23 Paragon  | 21.0                | 2900                  | N/A                  | 0                | Stowed                   | Off         |
| Malibu VLX Wakesetter | 21.0                | 3800                  | N/A                  | C                | Stowed                   | Off         |



### Phase 2 – Operational Conditions Tested

#### Condition 2 – sub-plane speeds

- leisurely cruise for non-wakesurf boats
- surfing for wakesuf boats



| Boat                  | Boat Speed<br>(mph) | Engine Speed<br>(RPM) | Trim Position<br>(%) | Ballast<br>(lbs) | Trim Plate/<br>Hydrofoil | Wake Shaper       |
|-----------------------|---------------------|-----------------------|----------------------|------------------|--------------------------|-------------------|
| Hurricane SS203       | 9.0                 | 2400                  | 100 (down)           | N/A              | N/A                      | N/A               |
| Cobalt R5             | 9.0                 | 2000                  | 100 (down)           | N/A              | N/A                      | N/A               |
| Cruiser Yachts GLS34  | 9.0                 | 1650                  | 100 (down)           | N/A              | N/A                      | N/A               |
| Nautique G23 Paragon  | 11.6                | 2800                  | N/A                  | 2200             | Stowed                   | Port - Postion #5 |
| Malibu VLX Wakesetter | 11.6                | 4400                  | N/A                  | 3690             | Down – Setting #2        | Port - Deployed   |



#### Phase 2 – Generating Prop Wash

For the 2 conditions tested

- Each boat was tested in a single day when winds <10 mph
- Boats made 5 passes in a straight line over the pads (colored lines are the real-time positional data plotted)
- 15-minute waiting period transpired between each pass
- 1-hour waiting period between the 2 conditions tested



#### Phase 2 – Propeller Wash Data

Echodata – sound reflection from the prop wash zone

• Detect strong signal from entrained air/exhaust. Depth of bubble penetration.

(Jeff)

• Bubbles are sustained for minutes within the water column





#### Phase 2 – Propeller Wash Data

Vertical Velocity Fluctuations - evidence of large scale fluctuations (minutes)



#### Phase 2 – Propeller Wash Data

Vertical Velocity Fluctuations - Evidence of Transverse Waves

- Propeller wash measured within lake. Duration and depth of penetration analysis underway.
- Oscillations in the water column were measured. Period of 3-4 seconds. Same as observed from surface and other velocity sensor. (TRANSVERSE WAVES).



#### Phase 2 – Propeller Wash - Next Steps and Outcomes

#### **Next Steps:**

- ➢ Finish data processing of all data
- Finish drafting report and submit for peer review
- ➢ Finalize document and publish

#### **Anticipated Outcomes:**

- > Characterization of propeller wash depth of penetration, duration, structure.
- Document any changes in water quality from prop wash at the test site (16-ft and 27-ft)
- Insight into safe operational depth for recreational boat including boats used for wakesurfing.



### Phase 2 – Funding

➢ Project Funding is through a crowdfunding campaign.

>We are grateful for the support of hundreds of donors to the project

➤Funding raised to date: \$135,000

# More information and to contribute to the project: z.umn.edu/SAFLHealthyWaters





### Phase 3 – Overview

- Three Year Project July 2023 June 2026
- \$415,000 State of Minnesota (LCCMR)
- Year 1 Expanding on Phase 2 propeller wash
  - Looking at different water depths
  - Sediment compositions
  - Aquatic vegetation



- Years 2 & 3 Examine environmental impacts of both <u>wind waves</u> and <u>boat wake waves</u>
  - bottoms sediments, aquatic vegetation, water quality, and shorelines.
  - Metro and northern MN lakes (targeting variable environmental attributes of lakes)



# **Thank You!**

Jeff Marr marrx003@umn.edu 612.624.4427

Andy Riesgraf riesg029@umn.edu

# z.umn.edu/SAFLHealthyWaters

ST. ANTHONY FALLS LABORATORY



UNIVERSITY OF MINNESOTA Driven to Discover®